FRAC Code List ©*2021: Fungal control agents sorted by cross resistance pattern and mode of action (including coding for FRAC Groups on product labels) # **Disclaimer** The technical information contained in this publication is provided to CropLife International/RAC members, non-members, the scientific community, and a broader public audience. While CropLife International and the RACs make every effort to present accurate and reliable information in the guidelines, CropLife International and the RACs do not guarantee the accuracy, completeness, efficacy, timeliness, or correct sequencing of such information. CropLife International and the RACs assume no responsibility for consequences resulting from the use of their information, or in any respect for the content of such information, including but not limited to errors or omissions, the accuracy or reasonableness of factual or scientific assumptions, studies or conclusions. Inclusion of active ingredients and products on the RAC Code Lists is based on scientific evaluation of their modes of action; it does not provide any kind of testimonial for the use of a product or a judgment on efficacy. CropLife International and the RACs are not responsible for, and expressly disclaim all liability for, damages of any kind arising out of use, reference to, or reliance on information provided in the guidelines. Listing of chemical classes or modes of action in any of the CropLife International/RAC recommendations must not be interpreted as approval for use of a compound in a given country. Prior to implementation, each user must determine the current registration status in the country of use and strictly adhere to the uses and instructions approved in that country. FRAC Code List[©] 2021 Page 1 of 17 ### INTRODUCTION The following table lists fungicides, mainly for use in plant protection, according to their mode of action and resistance risk. The most important bactericides are also included. Grouping is considering the biochemical mode of action, but a main driver is to identify cross-resistance patterns between chemistries. The Table headings are defined as: #### **MOA Code** Different letters (A to P, with added numbers) are used to distinguish fungicide groups according to their biochemical mode of action (MOA) in the biosynthetic pathways of plant pathogens. The grouping was made according to processes in the metabolism starting from nucleic acids synthesis (A) to secondary metabolism, e.g. melanin synthesis (I), followed by host plant defence inducers (P), recent molecules with an unknown mode of action and unknown resistance risk (U, transient status, until information about mode of action and mechanism of resistance becomes available), and chemical multi-site inhibitors (M). Fungicidal compositions of biological origin are grouped according to the main mode of action within the respective pathway categories. A more recently introduced category "Biologicals with multiple modes of action" (BM) is used for agents from biological origin showing multiple mechanisms of action. # **Target Site and Code** If available, the biochemical mode of action is given. In several cases the precise target site may not be known, however, a grouping within a given pathway / functional cluster is still possible. Grouping can also be made due to cross resistance profiles within a group or in relation to other groups. # **Group Name** The Group Names listed are based on chemical relatedness of structures which are accepted in literature (e.g. The Pesticide Manual). They are based on different sources (chemical structure, site of action, first important representative in group). #### **Chemical or Biological Group** Grouping is based on chemical considerations. Nomenclature is according to IUPAC and Chemical Abstract name. Taxonomic information may be used for agents of biological origin. #### Common name BSI/ISO accepted (or proposed) common name for an individual active ingredient expected to appear on the product label as definition of the product. #### **Comments on Resistance** Details are given for the (molecular) mechanism of resistance and the resistance risk. If field-resistance is known to one member of the Group, it is most likely but not exclusively valid that cross resistance to other group members will be present. There is increasing evidence that the degree of cross resistance can differ between group members and pathogen species or even within species. For the latest information on resistance and cross resistance status of a pathogen / fungicide combination, it is advised to contact local FRAC representatives, product manufacturer's representatives or crop protection advisors. The intrinsic risk for resistance evolution to a given fungicide group is estimated to be **low, medium or high** according to the principles described in FRAC Monographs 1, 2 and 3. Resistance management is driven by intrinsic risk of fungicide, pathogen risk and agronomic risk (see FRAC pathogen risk list). Similar classification lists of fungicides have been published by T. Locke on behalf of FRAG – UK (Fungicide Resistance, August 2001), and by P. Leroux (Classification des fongicides agricoles et résistance, Phytoma, La Défense des Végétaux, No. 554, 43-51, November 2002). #### FRAC Code Numbers and letters are used to distinguish the fungicide groups according to their cross-resistance behaviour. This code should be used to define the "FUNGICIDE GROUP" code, e.g. # GROUP 7 FUNGICIDE on product labels. The numbers were assigned primarily according to the time of product introduction to the market. The letters refer to P = host plant defence inducers, M = chemical multi-site inhibitors, U = unknown mode of action and unknown resistance risk, and BM = biologicals with multiple modes of action. Reclassification of compounds based on new research may result in codes to expire. This is most likely in the U - section when the mode of action gets clarified. These codes are not re-used for new groups; a note is added to indicate reclassification into a new code. Last update: March 2021 Next update decisions: February 2022 #### * Disclaimer The FRAC Code List is the property of FRAC and protected by copyright laws. The FRAC Code List may be used for educational purposes without permission from FRAC. Commercial use of this material may only be made with the express, prior, and written permission of FRAC. | MOA | TARGET SITE
AND CODE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |------------------|--|---------------------------------------|------------------------------------|---|--|--------------| | ism | A1 RNA polymerase I | (PhenylAmides) | acylalanines | benalaxyl benalaxyl-M (=kiralaxyl) furalaxyl metalaxyl metalaxyl-M (=mefenoxam) | Resistance and cross resistance well known in various Oomycetes but mechanism unknown. High risk. | 4 | | metabolism | | | oxazolidinones | oxadixyl | See FRAC Phenylamide
Guidelines for resistance
management | | | met | | | butyrolactones | ofurace | | | | A: nucleic acids | A2
adenosin-
deaminase | hydroxy-
(2-amino-)
pyrimidines | hydroxy-
(2-amino-) pyrimidines | bupirimate
dimethirimol
ethirimol | Medium risk. Resistance and cross resistance known in powdery mildews. Resistance management required. | 8 | | unc | A3 | hotorogramatics | isoxazoles | hymexazole | Resistance not known. | 32 | | Ä | DNA/RNA synthesis (proposed) | neteroaromatics | isothiazolones | octhilinone | Resistance not known. | 32 | | | A4 DNA topoisomerase type II (gyrase) | carboxylic acids | carboxylic acids | oxolinic acid | Bactericide. Resistance known.
Risk in fungi unknown.
Resistance management
required. | 31 | FRAC Code List[©] 2021 Page 4 of 17 | MOA | TARGET SITE
AND CODE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |-----------------------------------|---|---|---|---|---|--------------| | | | B1 fungicides (Methyl Benzimidazole Carbamates) | benzimidazoles | benomyl
carbendazim
fuberidazole
thiabendazole | Resistance common in many
fungal species. Several target
site mutations, mostly
E198A/G/K, F200Y in β-tubulin
gene. | | | | ß-tubulin assembly | | thiophanates | thiophanate
thiophanate-methyl | Positive cross resistance
between the group members.
Negative cross resistance to
N-phenyl carbamates.
High risk.
See FRAC Benzimidazole
Guidelines for resistance
management. | 1 | | r protein | B2
ß-tubulin assembly
in mitosis | N-phenyl
carbamates | N-phenyl
carbamates | diethofencarb | Resistance known. Target site mutation E198K. Negative cross resistance to benzimidazoles. High risk. Resistance management required. | 10 | | B: Cytoskeleton and motor protein | B3 ß-tubulin assembly in mitosis | benzamides thiazole carboxamide | toluamides ethylamino-thiazole- carboxamide | zoxamide | Low to medium risk.
Resistance management
required. | 22 | | celeton | B4
cell division
(unknown site) | phenylureas | phenylureas | pencycuron | Resistance not known. | 20 | | B: Cytosk | B5 delocalisation of spectrin-like proteins | benzamides | pyridinylmethyl-
benzamides | fluopicolide
fluopimomide | Resistant isolates detected in grapevine downy mildew. Medium risk. Resistance management required | 43 | | | B6 actin/myosin/fimbrin function | cyanoacrylates | aminocyanoacrylates | phenamacril | Resistance known in Fusarium graminearum. Target site mutations in the gene coding for myosin-5 found in lab studies. Medium to high risk. Resistance management required. | 47 | | | | ctin/myosin/fimbrin | benzophenone | metrafenone | Less sensitive isolates detected in powdery mildews (Blumeria and Sphaerotheca) Medium risk. | | | | | | benzoylpyridine | pyriofenone | Resistance management required. Reclassified from U8 in 2018 | 50 | FRAC Code List[©] 2021 Page 5 of 17 | MOA | TARGET SITE
AND CODE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |----------------|---|---|--|--|--|--------------| | | C1 complex I NADH oxido-reductase | pyrimidinamines | pyrimidinamines | diflumetorim | | | | | | pyrazole-MET1 | pyrazole-5-
carboxamides | tolfenpyrad | Resistance not known. | 39 | | | Oxido-reductase | Quinazoline | quinazoline | fenazaquin | | | | | | | phenyl-benzamides | benodanil
flutolanil
mepronil | | | | | | | phenyl-oxo-ethyl thiophene amide | isofetamid | | | | | | | pyridinyl-ethyl-
benzamides | fluopyram | | | | | | | phenyl-cyclobutyl-
pyridineamide | cyclobutrifluram | | | | | | | furan- carboxamides | fenfuram | Resistance known for several | | | on | | | oxathiin-
carboxamides | carboxin
oxycarboxin | fungal species in field populations and lab mutants. | | | oirati | | | thiazole-
carboxamides | thifluzamide | Target site mutations in sdh
gene, e.g. H/Y (or H/L) at 257, | | | C. respiration | C2
complex II:
succinate-dehydro-
genase | SDHI
(Succinate-
dehydrogenase
inhibitors) | pyrazole-4-
carboxamides | benzovindiflupyr bixafen fluindapyr fluxapyroxad furametpyr inpyrfluxam isopyrazam penflufen penthiopyrad sedaxane | 267, 272 or P225L, dependent on fungal species. Resistance management required. Medium to high risk. See FRAC SDHI Guidelines for resistance management. | 7 | | | | | N-cyclopropyl-N-
benzyl-pyrazole-
carboxamides | isoflucypram | | | | | | | N-methoxy-(phenyl-
ethyl)-pyrazole-
carboxamides | pydiflumetofen | | | | | | | pyridine-
carboxamides | boscalid | | | | | | | pyrazine-
carboxamides | pyraziflumid | | | FRAC Code List[©] 2021 Page 6 of 17 | MOA | TARGET SITE
AND CODE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |----------------|--|--|--|--|--|--------------| | C. respiration | C3 complex III: cytochrome bc1 (ubiquinol oxidase) at Qo site (cyt b gene) | Qol -fungicides
(Q uinone o utside
I nhibitors) | methoxy-acrylates methoxy-acetamide methoxy-carbamates oximino-acetates oximino-acetamides oxazolidine-diones dihydro-dioxazines imidazolinones | azoxystrobin coumoxystrobin enoxastrobin flufenoxystrobin picoxystrobin pyracystrobin mandestrobin pyraclostrobin pyrametostrobin triclopyricarb kresoxim-methyl trifloxystrobin dimoxystrobin fenaminstrobin metominostrobin orysastrobin famoxadone fluoxastrobin fenamidone | Resistance known in various fungal species. Target site mutations in cyt b gene (G143A, F129L) and additional mechanisms. Cross resistance shown between all members of the Code 11 fungicides. High risk. See FRAC Qol Guidelines for resistance management. | 11 | | | QoI-fungicides (Quinone outside Inhibitors; Subgroup A) | benzyl-carbamates | pyribencarb | Resistance not known. Not | | | | | | (Quinone outside
Inhibitors; | tetrazolinones | metyltetraprole | cross resistant with Code 11 fungicides on G143A mutants. High risk. | 11A | | | | | | | See FRAC Qol Guidelines for resistance management. | | FRAC Code List[©] 2021 Page 7 of 17 | MOA | TARGET SITE
AND CODE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |--------------------------------------|--|--|-----------------------------------|---|--|--------------| | | C4 | Oil funciaides | cyano-imidazole | cyazofamid | Resistance risk unknown but assumed to be medium to high (mutations at target site known | | | | complex III:
cytochrome bc1 | | sulfamoyl-triazole | amisulbrom | in model organisms).
Resistance management
required. | 21 | | | reductase) at Qi site | | picolinamides | fenpicoxamid
florylpicoxamid | No spectrum overlap with the
Oomycete-fungicides
cyazofamid and amisulbrom | | | (pen | C5 | | dinitrophenyl-
crotonates | binapacryl
meptyldinocap
dinocap | Resistance not known.
Also acaricidal activity. | | | continu | uncouplers of oxidative phosphorylation | | 2,6-dinitro-anilines | fluazinam | Low risk. However, resistance claimed in <i>Botrytis</i> in Japan. | 29 | |) u | | | (pyrhydrazones) | (ferimzone) | Reclassified to U 14 in 2012. | | | C: respiration (continued) | C6 inhibitors of oxidative phos- phorylation, ATP synthase | organo tin
compounds | tri-phenyl tin
compounds | fentin acetate
fentin chloride
fentin hydroxide | Some resistance cases known. Low to medium risk. | 30 | | | C7 ATP transport (proposed) | thiophene-
carboxamides | thiophene-
carboxamides | silthiofam | Resistance reported. Risk low. | 38 | | | complex III: cytochrome bc1 (ubiquinone reductase) at Qo site, stigmatellin binding sub-site | QoSI fungicides
(Quinone outside
Inhibitor,
stigmatellin
binding type) | triazolo-pyrimidylamine | ametoctradin | Not cross resistant to Qol fungicides. Resistance risk assumed to be medium to high (single site inhibitor). Resistance management required. | 45 | | ynthesis | D1 methionine biosynthesis (proposed) (cgs gene) | AP - fungicides
(Anilino-
Pyrimidines) | anilino-pyrimidines | cyprodinil
mepanipyrim
pyrimethanil | Resistance known in <i>Botrytis</i> and <i>Venturia</i> , sporadically in <i>Oculimacula</i> . Medium risk. See FRAC Anilinopyrimidine Guidelines for resistance management. | 9 | | protein s | protein synthesis
(ribosome,
termination step) | enopyranuronic acid antibiotic | enopyranuronic acid
antibiotic | blasticidin-S | Low to medium risk.
Resistance management
required. | 23 | | D: amino acids and protein synthesis | protein synthesis (ribosome, initiation step) | hexopyranosyl
antibiotic | hexopyranosyl
antibiotic | kasugamycin | Resistance known in fungal and bacterial (<i>P. glumae</i>) pathogens. Medium risk. Resistance management required. | 24 | | : amino | protein synthesis (ribosome, initiation step) | glucopyranosyl
antibiotic | glucopyranosyl
antibiotic | streptomycin | Bactericide. Resistance
known. High risk.
Resistance management
required. | 25 | | Δ | D5 protein synthesis (ribosome, elongation step) | tetracycline
antibiotic | tetracycline antibiotic | oxytetracycline | Bactericide. Resistance
known. High risk.
Resistance management
required. | 41 | FRAC Code List[©] 2021 Page 8 of 17 | MOA | TARGET SITE
AND CODE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |--------------|---|-----------------------------------|---------------------------------|--|---|--------------| | | E1 | | aryloxyquinoline | quinoxyfen | Resistance to quinoxyfen known. Medium risk. | | | c | signal transduction
(mechanism
unknown) | aza-
naphthalenes | quinazolinone | proquinazid | Resistance management required. Cross resistance found in <i>Erysiphe (Uncinula)</i> necator but not in <i>Blumeria</i> graminis. | 13 | | transduction | E2 MAP/Histidine- Kinase in osmotic signal transduction (os-2, HOG1) | PP-fungicides
(PhenylPyrroles) | phenylpyrroles | fenpiclonil
fludioxonil | Resistance found sporadically, mechanism speculative. Low to medium risk. Resistance management required. | 12 | | E: signal tr | E3 MAP/Histidine- Kinase in osmotic signal transduction (os-1, Daf1) | dicarboximides | dicarboximides | chlozolinate
dimethachlone
iprodione
procymidone
vinclozolin | Resistance common in Botrytis and some other pathogens. Several mutations in OS-1, mostly I365S. Cross resistance common between the group members. Medium to high risk. See FRAC Dicarboximide Guidelines for resistance management. | 2 | FRAC Code List[©] 2021 Page 9 of 17 | MOA | TARGET SITE
AND CODE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | | | |---|--|--|--|--|--|--------------|--|--| | | F1 | | forme | ly dicarboximides | | | | | | | F2 phospholipid | phosphoro-
thiolates | phosphoro-thiolates | edifenphos
iprobenfos (IBP)
pyrazophos | Resistance known in specific fungi. Low to medium risk. | 6 | | | | tion | biosynthesis,
methyltransferase | Dithiolanes | dithiolanes | isoprothiolane | Resistance management
required if used for risky
pathogens. | ŭ | | | | lipid synthesis or transport / membrane integrity or function | F3 cell peroxidation | AH-fungicides (Aromatic Hydrocarbons) (chlorophenyls, nitroanilines) | aromatic hydrocarbons | biphenyl
chloroneb
dicloran
quintozene (PCNB)
tecnazene (TCNB)
tolclofos-methyl | Resistance known in some fungi. Low to medium risk. Cross resistance patterns complex due to different | 14 | | | | ne inte | (proposed) | heteroaromatics | 1,2,4-thiadiazoles | etridiazole | activity spectra. | | | | | t / membrar | F4 cell membrane permeability, fatty acids (proposed) | Carbamates | carbamates | iodocarb
propamocarb
prothiocarb | Low to medium risk.
Resistance management
required. | 28 | | | | oori | F5 | | formerly CAA-fungicides | | | | | | | lus | F6 | | | | | | | | | sis or tra | microbial disrupters
of pathogen cell
membranes | f | formerly Bacillus amyloliquefaciens strains (FRAC Code 44); reclassified to BM02 in 2020 | | | | | | | hes | F7 | | formerly extract from I | | | | | | | ynt | cell membrane
disruption | | | eugenol, geraniol, thy
reclassified to BM01 i | | | | | | F: lipid s | F8 ergosterol binding | Polyene | amphoteric macrolide
antifungal antibiotic
from <i>Streptomyces</i>
natalensis or
S. chattanoogensis | natamycin
(pimaricin) | Resistance not known. Agricultural, food and topical medical uses. | 48 | | | | | F9 lipid homeostasis and transfer/storage | OSBPI
oxysterol binding
protein
homologue
inhibition | piperidinyl-thiazole-
isoxazolines | oxathiapiprolin
fluoxapiprolin | Resistance risk assumed to be medium to high (single site inhibitor). Resistance management required. (Previously U15). | 49 | | | FRAC Code List[©] 2021 Page 10 of 17 | MOA | TARGET SITE
AND CODE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |----------------------------------|--|---|---------------------------------|--|---|--------------| | | | | piperazines pyridines | triforine
pyrifenox
pyrisoxazole | | | | | | DMI-fungicides
(DeMethylation
Inhibitors)
(SBI: Class I) | pyrimidines | fenarimol
nuarimol | There are hig differences in | | | | | | imidazoles | imazalil
oxpoconazole
pefurazoate
prochloraz
triflumizole | There are big differences in the activity spectra of DMI fungicides. Resistance is known in various | | | sterol biosynthesis in membranes | G1 C14- demethylase in sterol biosynthesis (erg11/cyp51) | | triazoles | azaconazole bitertanol bromuconazole cyproconazole difenoconazole diniconazole epoxiconazole etaconazole fenbuconazole fluquinconazole fluquinconazole flutriafol hexaconazole imibenconazole impenconazole metentrifluconazole metentrifluconazole metentrifluconazole tebuconazole simeconazole tebuconazole tetraconazole triadimefon triadimenol triticonazole prothioconazole | fungal species. Several resistance mechanisms are known incl. target site mutations in cyp51 (erg 11) gene, e.g. V136A, Y137F, A379G, I381V; cyp51 promotor; ABC transporters and others. Generally wise to accept that cross resistance is present between DMI fungicides active against the same fungus. DMI fungicides are Sterol Biosynthesis Inhibitors (SBIs), but show no cross resistance to other SBI classes. Medium risk. See FRAC SBI Guidelines for resistance management. | 3 | | 9 | $oldsymbol{G2}$ Δ^{14} -reductase and | amines | morpholines | aldimorph
dodemorph
fenpropimorph
tridemorph | Decreased sensitivity for powdery mildews. Cross resistance within the group generally found but not | | | | $\Delta^8 \rightarrow \Delta^{7-}$ isomerase | ("morpholines") (SBI: Class II) | piperidines | fenpropidin
piperalin | to other
SBI classes. | 5 | | | in sterol
biosynthesis
(erg24, erg2) | | spiroketal-amines | spiroxamine | Low to medium risk. See FRAC SBI Guidelines for resistance management. | | | | G3 3-keto reductase, | KRI fungicides
(K eto R eductase
I nhibitors) | hydroxyanilides | fenhexamid | Low to medium risk. Resistance management | 17 | | | C4- de-methylation (erg27) | (SBI: Class III) | amino-pyrazolinone | fenpyrazamine | required. | • | | | G4 squalene-epoxidase | (SRI alaca IVA | thiocarbamates | pyributicarb | Resistance not known,
fungicidal and herbicidal
activity. | 18 | | | in sterol
biosynthesis
(erg1) | (SBI class IV) | allylamines | naftifine
terbinafine | Medical fungicides only. | 18 | FRAC Code List[©] 2021 Page 11 of 17 | MOA | TARGET SITE
AND CODE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |-----------------------------------|---|--|--|--|---|--------------| | <u>.s</u> | Н3 | | Formerly glucopyranos antibiotic (validamycin | | reclassified to U18 | 26 | | H: cell wall biosynthesis | H4 chitin synthase | polyoxins | peptidyl pyrimidine
nucleoside | polyoxin | Resistance known.
Medium risk.
Resistance management
required. | 19 | | wall bic | Н5 | cinnamic acid amides flumorph Plasmopara viticol | Resistance known in Plasmopara viticola but not in Phytophthora infestans. | | | | | H: cell | H5 cellulose synthase (Carboxylic Acid Amides) | valinamide
carbamates | benthiavalicarb
iprovalicarb
valifenalate | Cross resistance between all members of the CAA group. Low to medium risk. See FRAC CAA Guidelines for | 40 | | | | | 1 | mandelic acid amides | mandipropamid | resistance management. | | | _ | I 1 | MBI-R | isobenzo-furanone | fthalide | | | | wal | reductase in | (Melanin
Biosynthesis
Inhibitors – | pyrrolo-quinolinone | pyroquilon | Resistance not known. | 16.1 | | cell | melanin
biosynthesis | Reductase) | triazolobenzo-
thiazole | tricyclazole | | | | is in | 12 | MBI-D | cyclopropane-
carboxamide | carpropamid | Resistance known. | | | thes | dehydratase in | (Melanin
Biosynthesis
Inhibitors – | carboxamide | diclocymet | Medium risk.
Resistance management | 16.2 | | syn | melanin
biosynthesis | Dehydratase) | propionamide | fenoxanil | required. | | | I: melanin synthesis in cell wall | polyketide synthase
in melanin
biosynthesis | MBI-P
(Melanin
Biosynthesis
Inhibitors –
Polyketide
synthase) | trifluoroethyl-
carbamate | tolprocarb | Resistance not known. Additional activity against bacteria and fungi through induction of host plant defence | 16.3 | FRAC Code List[©] 2021 Page 12 of 17 | MOA | TARGET SITE
AND CODE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |---------------------------------|------------------------------------|--------------------------------|---|--|--|--------------| | | P 01 salicylate-related | benzo-
thiadiazole
(BTH) | benzo-thiadiazole
(BTH) | acibenzolar-S-methyl | Resistance not known. | P 01 | | | P 02 salicylate-related | benzisothiazole | benzisothiazole | probenazole
(also antibacterial and
antifungal activity) | Resistance not known. | P 02 | | ion | P 03 salicylate-related | thiadiazole-
carboxamide | thiadiazole-
carboxamide | tiadinil
isotianil | Resistance not known. | P 03 | | induct | P 04 polysaccharide elicitors | natural
compound | polysaccharides | laminarin | Resistance not known. | P 04 | | P: host plant defence induction | P 05
anthraquinone
elicitors | plant extract | complex mixture,
ethanol extract
(anthraquinones,
resveratrol) | extract from Reynoutria
sachalinensis (giant
knotweed) | Resistance not known. | P 05 | | lant | | i microniai | bacterial
Bacillus spp. | Bacillus mycoides
isolate J | | | | : host p | P 06
microbial elicitors | | fungal
Saccharomyces spp. | cell walls of
Saccharomyces cerevisiae
strain LAS117 | Resistance not known. | P 06 | | | D 07 | | ethyl phosphonates | fosetyl-Al | Few resistance cases reported in few | | | | P 07
phosphonates | phosphonates | | phosphorous acid and salts | pathogens.
Low risk.
Reclassified from U33 in
2018 | P07 | | | P 08 salicylate-related | isothiazole | isothiazolylmethyl
ether | dichlobentiazox | activates SAR both up-
and downstream of SA.
Resistance not known. | P 08 | FRAC Code List[©] 2021 Page 13 of 17 | MOA | TARGET SITE
AND CODE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |---|---|------------------------------|-----------------------------------|------------------------------|---|--------------| | | unknown | cyanoacetamide-
oxime | cyanoacetamide-
oxime | cymoxanil | Resistance claims described.
Low to medium risk.
Resistance management
required. | 27 | | | | formerly phosp | honates (FRAC code 33 | 3), reclassified to P | 07 in 2018 | | | | unknown | phthalamic acids | phthalamic acids | tecloftalam
(Bactericide) | Resistance not known. | 34 | | des) | unknown | benzotriazines | benzotriazines | triazoxide | Resistance not known. | 35 | | fungicic | unknown | benzene-
sulfonamides | benzene-
sulphonamides | flusulfamide | Resistance not known. | 36 | | sified | unknown | pyridazinones | pyridazinones | diclomezine | Resistance not known. | 37 | | on
clas | | formerly methas | sulfocarb (FRAC code 42 | 2), reclassified to M | 12 in 2018 | | | • of acti | unknown | phenyl-
acetamide | phenyl-acetamide | cyflufenamid | Resistance in <i>Sphaerotheca</i> .
Resistance management
required | U 06 | | U: Unknown mode of action appearing in the list derive from reclassified fungicides) | cell membrane
disruption
(proposed) | guanidines | guanidines | dodine | Resistance known in Venturia inaequalis. Low to medium risk. Resistance management recommended. | U 12 | | U: Unkn
appearing ir | unknown | thiazolidine | cyano-methylene-
thiazolidines | flutianil | Resistance in <i>Sphaerotheca</i> and
<i>Podosphaera xanthii</i> .
Resistance management
required | U 13 | | rs not a | unknown | pyrimidinone-
hydrazones | pyrimidinone-
hydrazones | ferimzone | Resistance not known (previously C5). | U 14 | | (U numbers not | complex III:
cytochrome bc1,
unknown binding
site (proposed) | 4-quinolyl-
acetate | 4-quinolyl-acetates | tebufloquin | Not cross resistant to Qol. Resistance risk unknown but assumed to be medium. Resistance management required. | U 16 | | | Unknown | tetrazolyloxime | tetrazolyloximes | picarbutrazox | Resistance not known. Not cross resistant to PA, Qol, CAA. | U 17 | | | Unknown
(Inhibition of
trehalase) | glucopyranosyl
antibiotic | glucopyranosyl
antibiotics | validamycin | Resistance not known. Induction of host plant defense by trehalose proposed (previously H3). | U 18 | FRAC Code List[©] 2021 Page 14 of 17 | MOA | TARGET SITE
AND CODE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |---------------------------------------|-------------------------|---|-------------------------------------|--|--|--------------| | Not
specified | Unknown | diverse | diverse | mineral oils,
organic oils,
inorganic salts,
material of
biological origin | Resistance not known. | NC | | tivity | | inorganic
(electrophiles) | inorganic | copper
(different salts) | Also applies to organic copper complexes | M 01 | | te ac | | inorganic
(electrophiles) | inorganic | sulphur | | M 02 | | M: Chemicals with multi-site activity | | dithiocarbamates
and relatives
(electrophiles) | dithio-carbamates
and relatives | amobam ferbam mancozeb maneb metiram propineb thiram zinc thiazole zineb ziram | | M 03 | | M: Ch | | phthalimides
(electrophiles) | phthalimides | captan
captafol
folpet | | M 04 | | | multi-site | chloronitriles
(phthalonitriles)
(unspecified
mechanism) | chloronitriles
(phthalonitriles) | chlorothalonil | generally considered as a low
risk group without any signs of
resistance developing to the | M 05 | | | contact
activity | sulfamides
(electrophiles) | sulfamides | dichlofluanid
tolylfluanid | fungicides. | M 06 | | | | bis-guanidines
(membrane
disruptors,
detergents) | bis-guanidines | guazatine
iminoctadine | | M 07 | | | | triazines
(unspecified
mechanism) | triazines | anilazine | | M 08 | | | | quinones
(anthraquinones)
(electrophiles) | quinones
(anthraquinones) | dithianon | | M 09 | | | | quinoxalines
(electrophiles) | quinoxalines | chinomethionat / quinomethionate | | M 10 | | | | maleimide
(electrophiles) | maleimide | fluoroimide | | M 11 | | | | thiocarbamate
(electrophiles) | thiocarbamate | methasulfocarb | reclassified from U42 in 2018 | M 12 | FRAC Code List[©] 2021 Page 15 of 17 | MOA | TARGET SITE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |---|---|---------------|--|--|--|--------------| | BM: Biologicals with multiple modes of action: Plant extracts | multiple effects on
ion membrane
transporters;
chelating effects | plant extract | polypeptide (lectin) | extract from the cotyledons of lupine plantlets ("BLAD") | Resistance not known.
(previously M12). | | | | affects fungal
spores and germ
tubes,
induced plant
defense | plant extract | phenols,
sesquiterpenes,
triterpenoids,
coumarins | extract from
Swinglea glutinosa | Resistance not known. | BM 01 | | | cell membrane
disruption, cell wall,
induced plant
defense
mechanisms | plant extract | terpene hydrocarbons,
terpene alcohols and
terpene phenols | extract from Melaleuca alternifolia (tea tree oil) plant oils (mixtures): eugenol, geraniol, thymol | Resistance not known.
(previously F7) | | FRAC Code List[©] 2021 Page 16 of 17 | MOA | TARGET SITE | GROUP NAME | CHEMICAL OR
BIOLOGICAL GROUP | COMMON NAME | COMMENTS | FRAC
CODE | |---|---|--|---------------------------------|---|--|--------------| | ogicals with multiple modes of action:
Microbial | multiple effects described (examples, not all apply to all biological groups): competition, mycoparasitism, antibiosis, membrane disruption by fungicidal lipopeptides, lytic enzymes, induced plant defence | microbial (strains of living microbes or extract, metabolites) | fungal
Trichoderma spp. | Trichoderma atroviride strain I-1237 strain LU132 strain SC1 strain SKT-1 strain 77B Trichoderma asperellum strain T34 strain kd Trichoderma harzianum strain T-22 Trichoderma virens | Resistance not known | | | | | | fungal
Clonostachys spp. | strain G-41 Gliocladium catenulatum strain J1446 Clonostachys rosea strain CR-7 | | | | | | | fungal
Coniothyrium spp. | Coniothyrium minitans strain CON/M/91-08 | | | | th multipl
Microbial | | | fungal Talaromyces spp. | fungal flavus Talaromyces spp | | BM 02 | | als wit | | | fungal Saccharomyces spp. | strain SAY-Y-94-01
Saccharomyces
cerevisae | Bacillus amyloliquefaciens reclassified from F6, Code 44 in 2020 synonyms for Bacillus amyloliquefaciens are Bacillus subtilis and B. subtilis var. amyloliquefaciens (previous taxonomic classification). | | | | | | bacterial Bacillus spp. | strain LAS02 Bacillus amyloliquefaciens | | | | BM: Biolo | | | | strain QST713
strain FZB24
strain MBI600
strain D747
strain F727
strain AT-332 | | | | | | | | Bacillus subtilis | | | | | | | | strain AFS032321
strain Y1336
strain HAI-0404 | | | | | | | bacterial Pseudomonas spp. | Pseudomonas
chlororaphis | | | | | | | bacterial Streptomyces spp. | strain AFS009
Streptomyces
griseovirides | | | | | | | | strain K61 Streptomyces lydicus | | | | | | | | strain WYEC108 | | | FRAC Code List[©] 2021 Page 17 of 17