

GHS Physical Hazards

Presentation at KemI:s ITP Stockholm, 22 September 2014

> Lorens van Dam Swedish Civil Contingencies Agency lorens.van.dam@msb.se

Myndigheten för somhöllsskydd och beredskop

What is a physical hazard?

"Physical hazards" is a term collective term for hazards deriving from:

Explosivity

- Flammability
- Oxidising abilities
- Decomposition
- Pressure
- (Corrosivity on metals)

The 16 ph hazard cla	asses Cat.1 Cat.2 Cat.3
2.1 Explosives	2.9. Pyrophoric liquids
2.2 Flammable gases	2.10 Pyrophoric solids
2.3 Flammable aerosoles	2.11 Self-heating substances and mixtures
2.4 Oxidizing gases	2.12. Substances and mixtures which in contact
2.5 Gases under pressure	with water emit flammable gases
2.6 Flammable liquids	2.13 Oxidizing liquids
2.7 Flammable solids	2.14 Oxidizing solids
2.8 Self-reactive substances	2.15 Organic peroxides
and mixtures	2.16 Corrosive to metals

Myndigheten för somhällskydd oci beredskop The UN Te	est Manual is the core
Reconversion on the TRANSPORT OF DANGEROUS GOODS Manual of Tests and Calveu	 For physical hazards, the GHS/CLP refers testing to the methods of the UN Recommendations on the Transport of Dangerous Goods - Manual of Tests and Criteria.
	 In the business, we usually just call it the UN Test Manual It contains (almost) all the tests needed for evaluation of the GHS/CLP physical hazards.
CLP physical hazards (L. van Dam)	6

Myndigheten för samhällsskydd och beredskap

Classification of Flammable Gases

- All gases that can burn in air are classified as Flammable Gases according to GHS.
- Category 1 if LEL≤13% or UEL-LEL≥12% in air.
- Category 2 if combustible in air and not Cat. 1.

Mindipleten för somhölissived och beredstap Classificar	tion of flam	mable liquids	
Category	Flash point	Boiling point	
1	<23°C	≤35°C	
2	<23°C	>35°C	
3	≥23-60°C	regardless	
4	≥60-93°C	regardless	
Cat. 2 if Tb>35°C	Cat. 3	Cat. 4	
Cat. 1 if Tb≤35°C		FI	lash
2	:3 6	50 93 (°	°C)

Cat. 1 if flash point <23°C and boiling point ≤35°C. Cat. 2 if flash point <23°C and boiling point >35°C. Cat. 3 if flash point ≥23-60°C. Cat. 4 if flash point >60-93 °C.

Examples of flammable liquids

Liquid	Flash point (°C)	Boiling point (°C)
Acetone	-18	56
Diethyleter	-42	35
Decane	46	174
Ethanol	12	78
Gasoline	<-30	25-200
Cyclohexanone	44	156
Diesel	55-70	180-300

Multipleter for contribution Labelling of Flammable Liquids Cat. 1 DANGER

Cat. 1	DANGER	Extremely flammable liquid and vapour (H224)
Cat. 2	DANGER	Highly flammable liquid and vapour (H225)
Cat. 3	WARNING	Flammable liquid and vapour (H226)

Category 1 Category 2 Image: Category 1 Image: Category 2 Image: Category 2 Image: Category 2 Image: Category 1 Image: Category 2 Image: Category 2

Musicher für omhöltsjydd Substances w water generat	hich in conta e flammable	et with gases
Some substances/mixte contact with water. Fre	ures generate flam quently the gas is l	mable gas upon hydrogen.
Category 1 Spontaneous ignition or >10 liter gas/min.	>20 liter gas/hour	>1 liter gas/hour
DANGER	DANGER	WARNING
In contact with water releases flammable gases which may ignite spontaneously (H260)	In contact with water releases flammable gases (H261)	In contact with water releases flammable gases (H261)

Oxidising gases

Gases that are "more oxidising than air" are classified as Oxidising Gases.

I practice the oxidising ability of gas mixtures is calculated via a method in ISO 10156 and compared to a mixture of 23,5% oxygen and the rest nitrogen.

Myndigheten för samhällsskydd och beredskap

What is an "explosion"?

- Detonation: Super-sonic combustion, 2-10 km/s Generates a pressure front The pressure front propagates the reaction Typical for "real" explosives
- Deflagration: Sub-sonic "normal" combustion, <100 m/s No pressure front Typical for pyrotechnic mixtures

	s of explosive aroups
Table A6.1 EXAMPLES IN ORGANIC	OF CHEMICAL GROUPS INDICATING EXPLOSIVE PROPERTI MATERIALS
Structural feature	Examples
C-C unsaturation	Acetylenes, acetylides, 1,2-dienes
C-Metal, N-Metal	Grignard reagents, organo-lithium compounds
Contiguous nitrogen atoms	Azides, aliphatic azo compounds, diazonium salts, hydrazines, sulphonylhydrazides
	Peroxides, ozonides
Contiguous oxygen atoms	
Contiguous oxygen atoms N-O	Hydroxylamines, nitrates, nitro compounds, nitroso compounds, N-oxides, 1,2-oxazoles
Contiguous oxygen atoms N-O N-halogen	Hydroxylamines, nitrates, nitro compounds, nitroso compounds, N-oxides, 1,2-oxazoles Chloramines, fluoroamines

П

Windowski for uch beeskipp Labelling of Explosives						
Unstable	Div. 1.1	Div. 1.2	Div. 1.3	Div. 1.4	Div. 1.5	Div. 1.6
					No pictogram	No pictogran
DANGER	DANGER	DANGER	DANGER	WARNING	DANGER	No signal word
Unstable explosive. (H200)	Explosive; mass explosion hazard. (H201)	Explosive; severe projection hazard. (H202)	Explosive; fire, blast or projection hazard. (H202)	Fire or projection hazard. (H204)	May mass explode in fire. (H205)	No hazara statement

SB samhällsskydd och beredskap	
Self-read	tives
Examples:	Aliphatic azo-compounds (-C-N=N-C-)
Or	ganic azides (-C-N ₂)
	game azides $(-C-1/3)$
DI	azonium sans (-CN ₂ +Z-)
N-	nitroso-compounds (-N-N=O)
Ar	omatic sulfohydrazides (-SO ₂ -NH-NH ₂)
Table A6.2: EXAMPLE PROPERT Structural feature	ES OF CHEMICAL GROUPS INDICATING SELF-REACTIVE
Table A6.2: EXAMPLE PROPERT Structural feature Mutually reactive groups	S OF CHEMICAL GROUPS INDICATING SELF-REACTIVE EES IN ORGANIC MATERIALS Examples Anninonitriles, haloanilines, organic salts of oxidizing acids
Table A6.2: EXAMPLE PROPERT Structural feature Mutually reactive groups S=O	S OF CHEMICAL GROUPS INDICATING SELF-REACTIVE EXAMPLES NORGANIC MATERIALS Examples Animonitritis, halomilines, outphonyl cyanides, subplonyl halides, subplonyl halides,
Fable A6.2: EXAMPLE PROPERT Structural feature Mutually reactive groups S=O P-O	S OF CHEMICAL GROUPS INDICATING SELF-REACTIVE EST NORGNY MATERIALS Examples Aminonitriles, halosmilines, organic salts of oxidizing acids Singhenyr haides, sulphenyl cynnides, sulphenyl hydrazides Phosphites
Fable A6.2: EXAMPLE PROPERT Structural feature Mutually reactive groups S=O P-O Strained rings Strained rings	S OF CHEMICAL GROUPS INDICATING SELF-REACTIVE ESF NORGANUE MATERIALS Examples Annicentities, halosmilines, organic safts of oxidizing acids Subplenyl halides, subplenyl cynnides, subplenyl hydrazides Phosphates Epoxides, zuridines

Type A: Can detonate or deflagrate rapidly, as packaged.

Type B: Possesses explosive properties and is liable to undergo a thermal explosion in package.

 $\ensuremath{\text{Type C}}$: Possesses explosive properties but cannot undergo a thermal explosion.

Type D: Show no violent effect when heated under confinement, but can deflagrate or partially detonate.

Type E: Neither detonates nor deflagrates and shows low or no effect when heated under confinement.

Type F: Neither detonates nor deflagrates at all, shows low or no effect when heated under confinement as well as low or no explosive power.

Type G: Like Type F with no explosive power and thermally stable.

[*] Labelling of Organic Peroxides and Self-reactives				
Туре А	Type B	Type C-D	Type E-F	Type G
				No pictogram
DANGER	DANGER	DANGER	WARNING	No signal word
Heating may cause an explosion (H240)	Heating may cause a fire or explosion (H241)	Heating may cause a fire. (H242)	Heating may cause a fire. (H242)	No hazard statement

- All gases are supplied under pressure, so all gases are classified as Gases Under Pressure.
- Depending on the physical state in the container, division is made into four groups.

Compressed gas	Liquified gas	Refridgerated liquified gas	Dissolved gas
\diamond	\diamond	\diamond	\diamond
WARNING	WARNING	WARNING	WARNING
Contains gas under pressure; may explode if heated (H280)	Contains gas under pressure; may explode if heated (H280)	Contains refridgerated gas; may cause cyogenic burns or injury (H281)	Contains gas under pressure; may explode if heated (H280)

