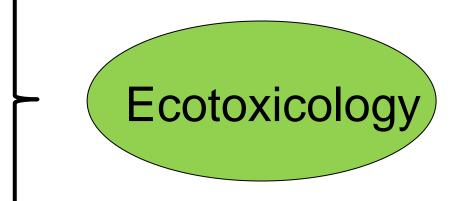


Environmental hazard classification and labelling

Jonas Falck Swedish Chemicals Agency

ITP 22 September 2014

<u>Contents</u>


- Background and scope
- The classification scheme
- Criteria for env. hazard classification substances
- Degradation and Bioaccumulation assessment for classification purposes
- Exercise substance classification
- Criteria for env. hazard classification mixtures
- Exercise mixture classification (principle use of the Summation method)

www.kemi.se

Ecotoxicological concept

- Ecology
- Toxicology
- Environmental Chemistry

Concerned with adverse effects of chemical and physical agents on living organisms, especially on populations and communities within defined ecosystems.

Environmental hazard classification – Define effects on ecosystems rather than on individuals within a species or population. E.g. Hazardous to the aquatci environment

Short-term (Acute) and long-term adverse effects

Example of an acute (and obvious) effect

Cyanide in spillage water from a goldmine in Rumania, 2000, caused severe fish death. Also rivers in Serbia were affected.

KEMIkalieinspektionen Swedish Chemicals Agency

Examples of observed long term toxic effects in the environment

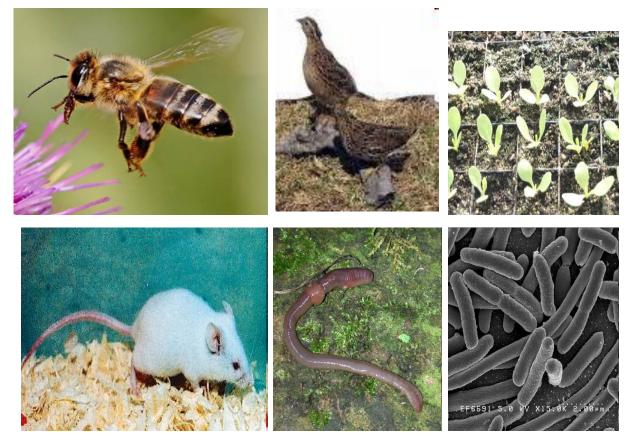
OSEOD-00800565-881 [RM] © www.visualphotos.com

 Eggshell thinning in eagles and brown pelicans - 1950s DDT and organo-chlorines Industrial melanism
 of moths - 1850s Industrial
 revolution soot from coal
 burning

- The classification scheme
- is principally concerned with the aquatic environmental compartment (which for most substances, the majority of data available addresses)
- This compartment is
- vulnerable
- receiving environment
- sensitive organisms

Scope

- The classification scheme covers both:
 - short term effects
 - long term effects


to both

- aquatic freshwaters
- marine ecosystems

What about the other compartments? (E.g. the terrestrial compartment)

Terrestrial test organisms

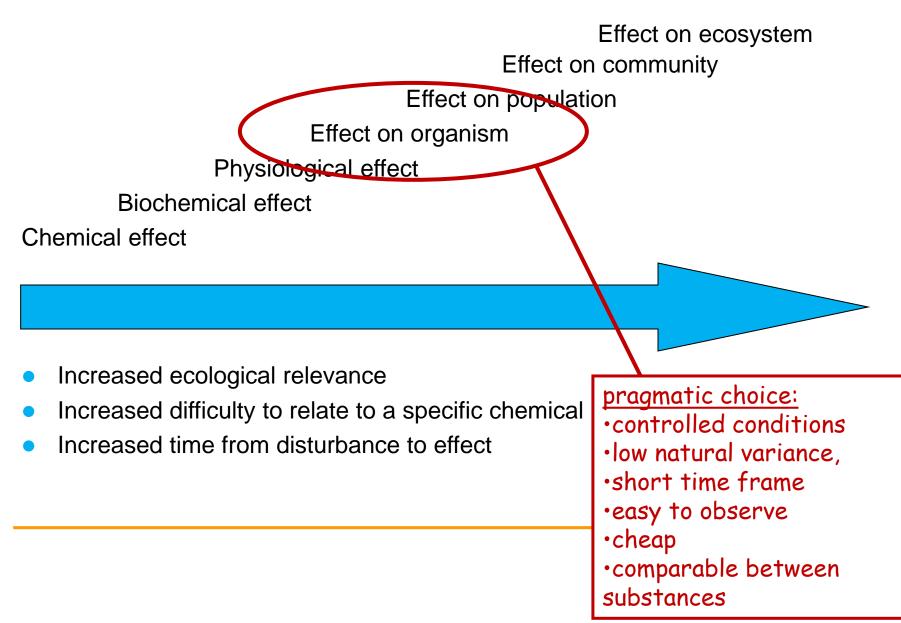
Not covered in a hazard classification scheme yet, but many substances hazardous to aquatic ecosystem would also be hazardous to terrestrial ecosystems.

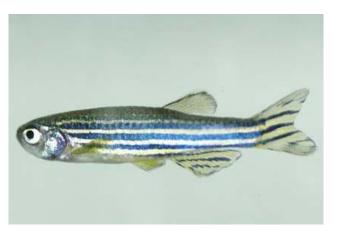
Hazardous to the Ozone Layer

<u>Substances</u>

if the available evidence concerning its properties and its predicted or observed environmental fate and behavior indicate that it may present a danger to the structure and/or the functioning of the stratospheric ozone layer.

<u>Mixtures</u>

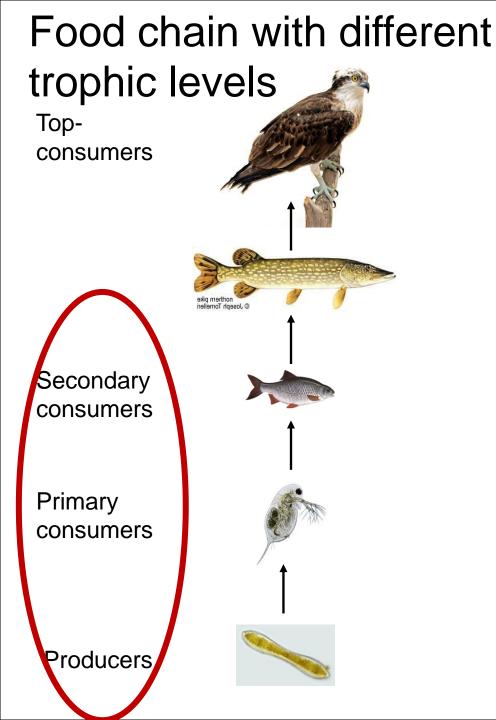

Concentration limit of 0.1%


WARNING

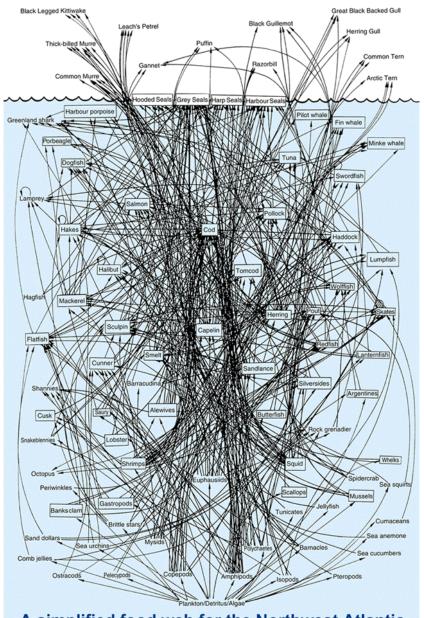
H420: Harms public health and the environment by destroying ozone in the upper atmosphere

What effects can be observed?

For aquatic hazard classification, toxicity data is normally needed on three trophic levels


Fish

Crustacean


Alge/aquatic plants

The taxa chosen from three trophic levels represent the "base-set" of toxicity test data; a minimum data-set for a fully valid description of toxicity as part of aquatic hazard.

Food web

A simplified food web for the Northwest Atlantic

Test methods for environmental toxicity and fate

- Test methods are highly standardized.
 - OECD test guidelines
 - EU test methods (Council regulation 440/2008)
 - ISO standards (CEN)
 - National: ASTM (USA), MITI (Japan), SIS (Sweden)
 - IOBC-guidelines and SETAC guidelines regarding arthropods

For aquatic hazard classification OECD Test Guidelines or equivalent, Ex.:

Physico-chemical properties:

- 105 (Water solubility);
- 107 (n-octanol/water partition coefficient (Log K_{ow}))
- 111 (Hydrolysis as function of pH Abiotic degradation)

> Aquatic toxicity:

- 201 (Algal Growth Inhibition);
- 202 Part 1&2, 211 (Daphnia sp. Acute Immob. & Reproduction);
- 203 (Fish, Acute Toxicity Test);
- 210 (Fish Early Life Stage)

Degradation:

- 301A-F, 306, 310 (Ready biodegradability);
- 309 (Aquatic simulation test)

> Bioaccumulation:

• 305 (Bioconcentration factor in fish, BCF);

www.kemi.se

- Use of non testing methods -

- In absence of experimental data, valid <u>non testing</u> <u>methods</u> can be relied upon:
 - Read across from similar chemicals
 - Information from Chemical Structure Structureactivity relationship (SAR)
 - Ex. provide predictions of <u>acute toxicity</u> by use of QSARs for:
 - Non-electrolyte, non-electrophilic, and otherwise non-reactive organic substances.
 - e.g. hydrocarbons, alcohols, ketones and certain aliphatic chlorinated hydrocarbons and otherwise non-reactive substances

The classification and labelling schemes

See GHS, Table 4.1.1 Classification categories for Hazardous to the aquatic environment

Hazard Class

Hazard Category

Acute 2 *

Acute3

Hazardous to the aquatic environment Short-term (acute) hazard Long-term (chronic) hazard Chronic 1 Chronic 2 Chronic 3 + Chronic 4

NOTE!

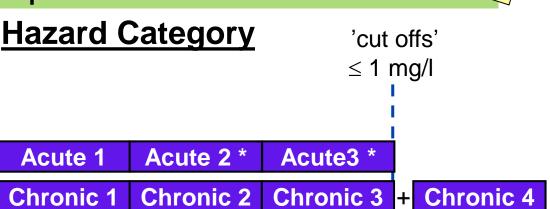
Acute 1 to 3 + Chronic 1 to 3: The core classification system.

Chronic 4: 'Safety Net' classification when standard criteria are not met, but there is a concern. Criteria: Not strictly defined, but one example: poorly soluble substances (< 1 mg/l) that are both

Acute 1

- not rapidly degradable and
- Bioaccumulative.

Short-term and Long-term hazard: are applied independently.

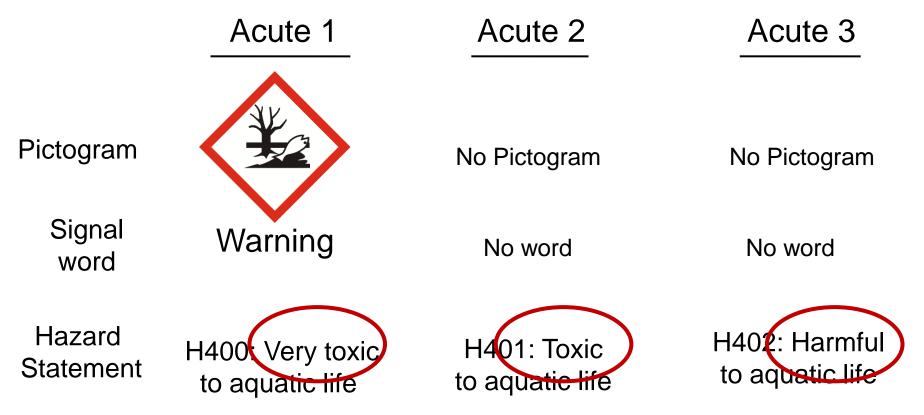


Classification categories for Hazardous to the aquatic environment

Hazard Class

Hazardous to the aquatic environment

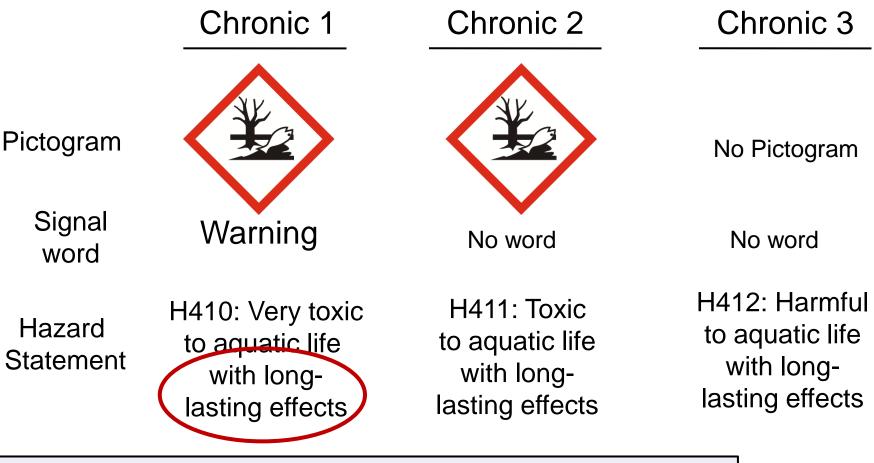
- Short-term (acute) hazard
- Long-term (chronic) hazard Chronic 1



Relevant concentrations in the environmentSypply and use sector: $\leq 1 \text{ mg/l}$ Transport sector: $\leq 100 \text{ mg/l}$

KEMI Kemikalieinspektionen Swedish Chemicals Agency

Labelling elements


> Acute (short-term) aquatic hazard - Categories Acute 1 to 3

Labelling elements

> Long-term aquatic hazard - Categories Chronic 1 to 3

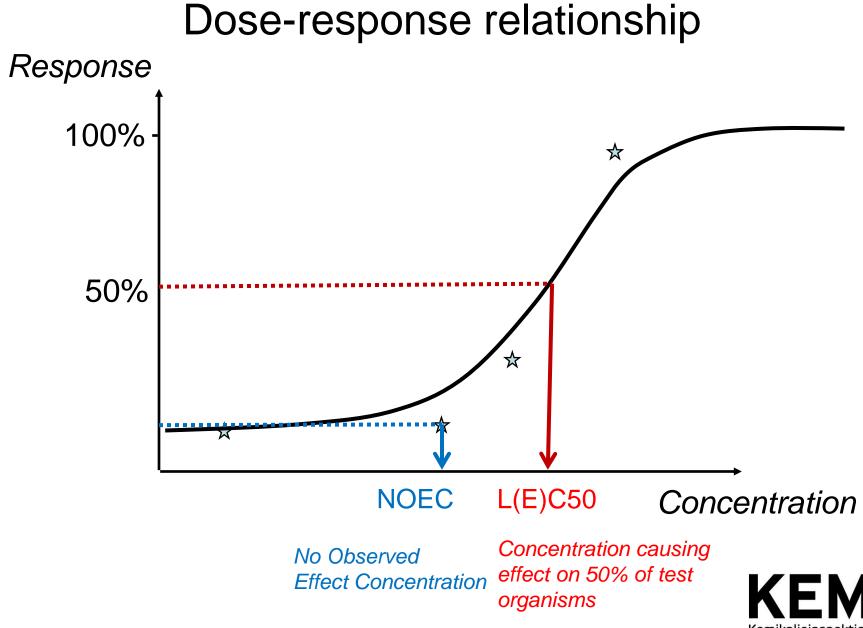
Safety net Chronic 4 - H413: May cause long lasting harmful effects to aquatic life.

<u>Criteria</u> for environmental hazard classification

substances

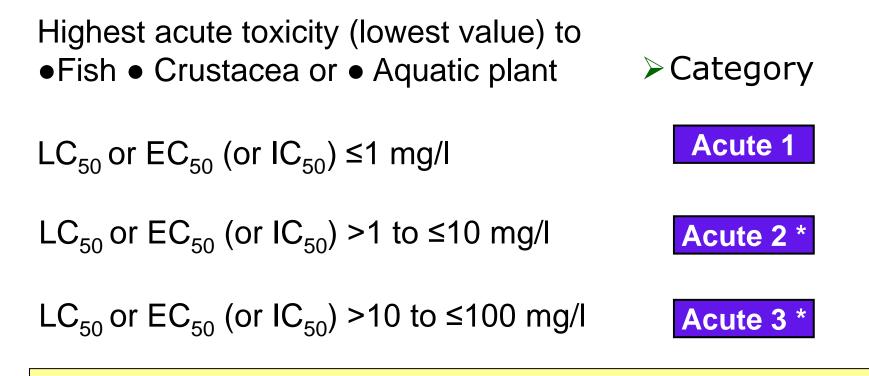
Acute toxicity determines the short-term hazard

- In principle > Intrinsic property to be injurious in short-term exposure - (hours to days)
- > Generally expressed:
 - LC₅₀ (50% lethal conc.) or EC₅₀ (50% effect conc.),


e.g. immobilization of daphnids, or reduction in growth rate in algae

Chronic toxicity determines the long-term hazard

determined by

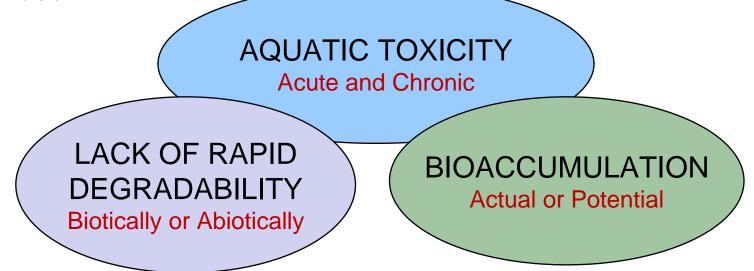

- Intrinsic property to be injurious during exposures which are determined in relation to the life-cycle of the organism - (days to weeks)
- > Generally expressed in terms of:
 - NOEC, LOEC or ECx (Normally EC₁₀)

Sublethal endpoints e.g. Survival, growth and/or reproduction

Kemikalieinspektionen Swedish Chemicals Agency

Acute (short-term) aquatic hazard

* Categories Acute 2 and 3 were mainly meant for transport of bulkquantities and therefore normally not implemented for Supply & Use

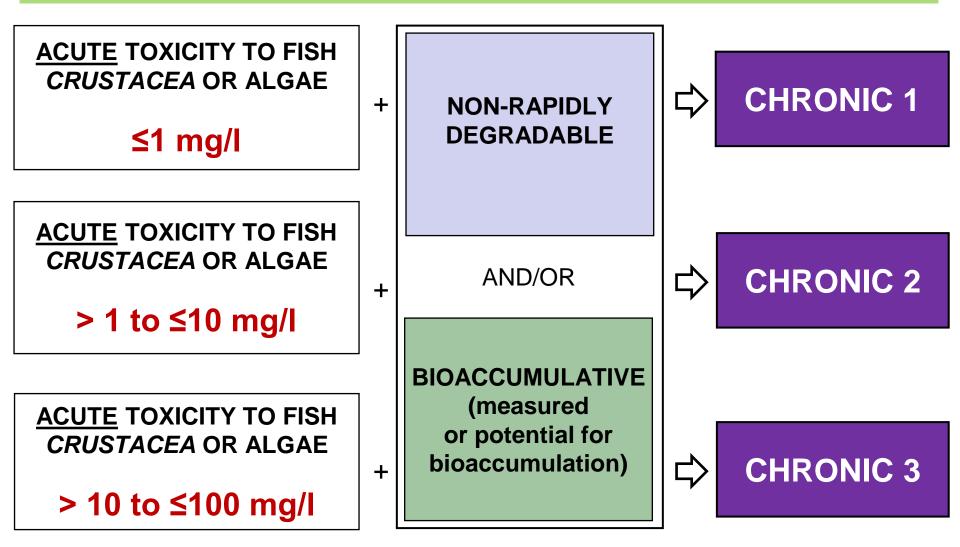


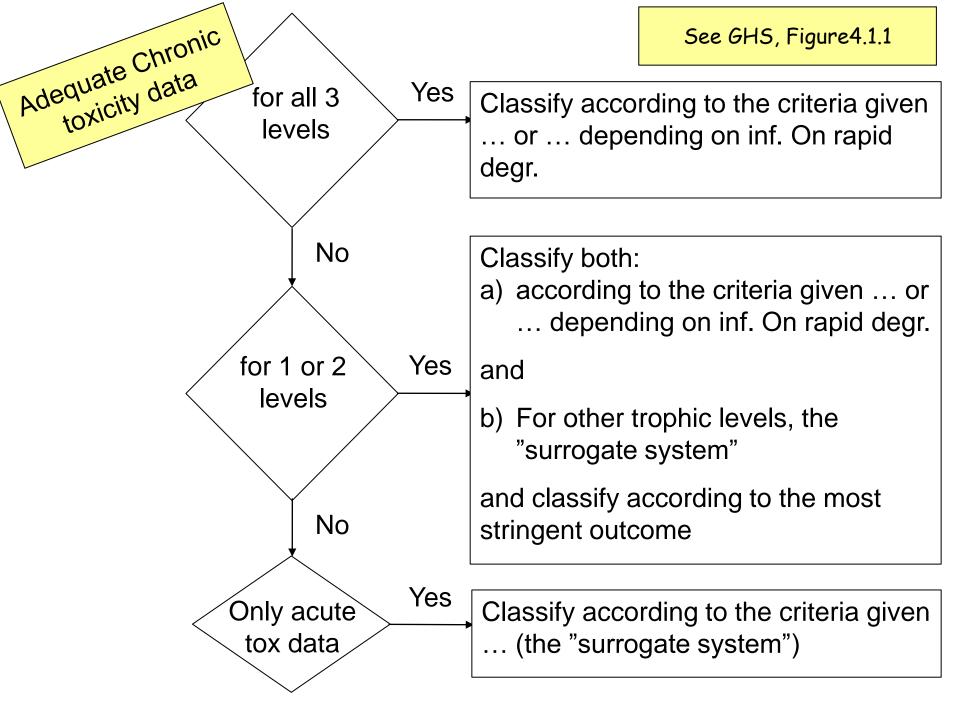
Basic elements used for Long-term hazard

Chronic toxicity data are often expensive to generate and therefore generally less available than acute toxicity data.

See GHS, Table 4.1.1

For practical reasons a limited set of specific properties (basic elements) has been selected through which the hazard can be best described.




Criteria for Long-term hazard

Criteria for Lo	ng-term hazaro	the "surna				
Adequate chronic toxicity data available		the " Surrogate System" of adequate chronic toxicity data				
Non-rapidly degradable (NRD) substance	Rapidly degradable (RD) substances	ACUTE TOXICITY				
Category: Chronic 1 NOEC or $EC_x \le 0.1$	Category: Chronic 1 NOEC or $EC_x \leq 0.01$	+ NON-RAPIDLY				
Category: Chronic 2 $0.1 < NOEC \text{ or } EC, \leq 1$	Category: Chronic 2 0.01 < NOEC or EC _x ≤ 0.1	DEGRADABLE and/or				
Regulatory acceptance based on relevant	Category: Chronic 3 $0.1 < NOEC \text{ or } EC \le 1$	BIOACCUMULATIVE				
concentrations in the environment Toxicity + degradation and/or bioaccumulation						
A A A A A A A A A A A A A A A A A A A	A/C = 10 and 100	KFM				

Kemikalieinspektionen Swedish Chemicals Agency

Long-term hazard in absence of adequate chronic toxicity data

Criteria for Long-term hazard

Adequate chro ava	In absence of adequate		
Non-rapidly degradable substances	Rapidly degradable substances (RD)	chronic toxicity data	
Category: Chronic 1 NOEC or $EC_x \le 0.1$	Category: Chronic 1 NOEC or $EC_x \le 0.01$	Category: Chronic 1-3 ACUTE TOXICITY	
Category: Chronic 2 $0.1 < NOEC \text{ or } EC_x \le 1$	Category: Chronic 2 $0.01 < NOEC \text{ or } EC_x \le 0.1$	+ BIOACCUMULATIVE and/or	
	Category: Chronic 3 $0.1 < NOEC \text{ or } EC_x \le 1$	LACK OF RAPID DEGRADATION	

Safety net classification Category: Chronic 4

When standard criteria are not met, but there is a concern. Not strictly defined criteria, but one example: <u>poorly soluble substances</u> (< 1 mg/l) that are <u>not rapidly degradable</u> **and** are <u>bioaccumulative</u>

M-factors must be set for highly toxic substances

Hazard Class

Hazard Category

Acute 2 *

Acute3

Chronic 2 Chronic 3 + Chronic 4

Note 2 to Table 4.1.1

- Hazardous to the aquatic environment
- Short-term (acute) hazar
- Long-term (chronic) hazard

`M-factor' means a multiplying factor. It is applied to substance as part of the <u>substance</u> classification as Categories Acute 1 and/or Chronic 1.

Acute 1

Chronic 1

It is used to derive by the summation method the classification of a mixture in which the substance is present.

Setting M-factors for highly toxic substances (Acute 1 and Chronic 1)

Acute toxicity	M factor			
L(E)C ₅₀ value (mg/l)				
0.1 < L(E)C ₅₀ ≤ 1	1			
0.01 < L(E)C ₅₀ ≤ 0.1	10			
0.001 < L(E)C ₅₀ ≤ 0.01	100			
0.0001 < L(E)C ₅₀ ≤ 0.001	1000			
0.00001 < L(E)C ₅₀ ≤ 0.0001	10000			
(continue in factor 10 intervals)				

Setting M-factors for highly toxic substances (Acute 1 and Chronic 1)

Acute toxicity	M factor	Chronic toxicity	M factor	
L(E)C ₅₀ value (mg/l)		NOEC value (mg/l)	NRD ^a components	RD ^b components
0.1 < L(E)C ₅₀ ≤ 1	1	0.01 < NOEC ≤ 0.1	1	-
0.01 < L(E)C ₅₀ ≤ 0.1	10	0.001 < NOEC ≤ 0.01	10	1
0.001 < L(E)C ₅₀ ≤ 0.01	100	0.0001 < NOEC ≤ 0.001	100	10
0.0001 < L(E)C ₅₀ ≤ 0.001	1000	0.00001 < NOEC ≤ 0.0001	1000	100
0.00001 < L(E)C ₅₀ ≤ 0.0001	10000	0.000001 < NOEC ≤ 0.00001	10000	1000
(continue in factor 10 intervals)		(continue in factor 10 intervals)		

Degradation and Bioaccumulation assessment

for classification purposes

Rapid degradation

- biotic or abiotic
 - degradation of organic substances; or
 - transformation of inorganic substances
- Either

www.kemi.se

- full mineralisation or
- primary degradation / transformation
 to non hazardous species (t¹/₂ < 16 days)

Kemikalieinspektionen Swedish Chemicals Agency

Rapid degradation - Decision scheme

GHS Annex 9 A944 A substance is considered to be **<u>not</u>** rapidly degradable <u>**unless**</u> at least one of the following is fulfilled:

- a) Ultimately degraded in biodegradation screening test (\geq 60/70% in 28days);
- b) Ultimately degraded in a surface water simulation test ($t\frac{1}{2}$ < 16days);
- c) Primarily degraded (or transformed) to non hazardous species ($t^{1/2} < 16$ d)

When these **preferred data** types are **not available** rapid degradation may be demonstrated if one of the following criteria is justified:

- a) Ultimately degraded in an aquatic sediment or soil simulation test;
- b) If only BOD5 and COD available, then if BOD5/COD \geq 0.5;
- c) A weight of evidence approach based on read-across

If none of the above types of data are available then the substance is considered as **<u>not</u>** rapidly degradable.

Biodegradation Screening test vs. Simulation tests

Screening tests

- Fests conducted in the laboratory with relatively high concentrations of test substance (2-100 mg/l).
- All organic substances that degrade to a level higher than the pass level in a standard ready biodegradability test (OECD 301 A-F, 306 and 310 or similar test) should be considered rapidly degradable.
- ≥ 70 %, 28-day test, based on dissolved organic carbon
 ≥ 60 %, 28 day test, O₂-depletion or CO₂-generation

www.kemi.se

Biodegradation Screening test vs. Simulation tests

Simulation tests

- Tests conducted in the laboratory, but simulating environmental conditions and employing natural samples as inoculum.
- An environmental simulation test would normally be conducted according to one or more of the standard procedures of OECD Guidelines:
 - 307 (soil),
 - 308 (aquatic sediment), or
 - 309 (water)

Biotic vs. abiotic degradation

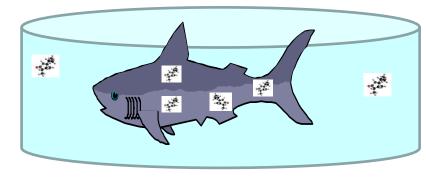
Hydrolisys (abiotic degradation)

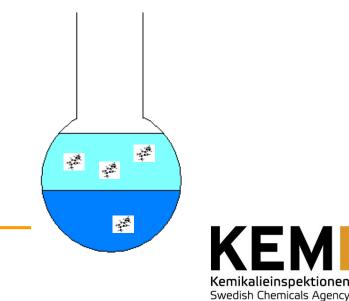
- Data on hydrolysis might be considered for classification purposes to measure the longest half-life t¹/₂ determined within the pH range 4 - 9.
- ➢ E.g. OECD 111.

Degradation data not used for classification

- Inherent biodegradability (e.g. OECD 302)
- Sewage treatment plant (STP) simulation tests (e.g. OECD 303)
- Anaerobic degradation data
- Field investigations
- Monitoring data
- Photochemical degradation
- Volatilisation

www.kemi.se


Bioaccumulation


Def.: The net result of uptake, transformation and elimination of a substance in an organism

- Generally expressed in terms of:
- Bioconcentration factor (BCF ≥ 500),

(The ratio between the conc. in biota and the conc. in surrounding medium, pref. whole fish/water, and

 in absence of BCF, the Octanolwater-partitioning coefficient (log Kow ≥ 4)

ECHA guidance documents

Introductory Guidance on the CLP Regulation

- Basic guidance for inexperienced classifiers and managers;

Explains the system (roles and obligations) and why we have it.

Guidance on the Application of the CLP Criteria

- Detailed guidance "for experts";
- On the application of the CLP criteria for physical, health and environmental hazards.

Enable industry to self-classify chemicals and to provide appropriate hazard communication information to the target populations.

AECHA

Guidance on the Application of the CLP Criteria

- Detailed guidance "for experts" -
- GENERAL PRINCIPLES FOR CLASSIF. AND LABELL. PART 1:
- PHYSICAL HAZARDS PART 2:
- PART 3: HEALTH HAZARDS
- ENVIRONMENTAL HAZARDS **PART 4**:
- PART 5: ADDITIONAL HAZARDS
- **AQUATIC TOXICITY** ANNEX I:
- ANNEX II: RAPID DEGRADATION
- **ANNEX III:** BIOACCUMULATION

See GHS, Annex 9, Ch. 7 **METALS AND INORGANIC METAL COMPOUNDS ANNEX IV:**

- ANNEX V: FRNET LINKS FOR THE USERS OF THE GUIDANCE
- BACKGROUND TO GUIDANCE FOR SETTING SCLs FOR ANNEX VI REPRODUCTIVE TOXICITY

<u>Criteria</u> for environmental hazard classification

mixtures

Substance ingredients

It is important to get a clear picture on which substances are contained in a mixture.

Basic information would include: (i) the <u>substance</u> identity, (ii) its classification (iii) any applied M-factor, and (iv) concentration in the mixture.

Where an ingredient in a mixture is itself a mixture, it is genereally necessary to get information on the ingredient substances of the first mixture.

NOTE! Further dialogue with the supplier may be necessary to obtain additional information.
 Suppliers in a supply chain shall cooperate to meet the requirements for classification, labelling and packaging – CLP, Art. 4.9

Testing of mixtures must be avoided !

- > Testing of mixtures is highly complex. Both in conduct of the test, and in interpretation of data.
- Alternative approaches such as the summation method, should be considered, particularly where testing would involve the use of vertebrate animals such as fish.

NOTE! *Degradability* and *bioaccumulation* tests for <u>mixtures</u> are not used as they are usually difficult to interpret, and such tests may be meaningful only for single substances.

Classification of mixtures

- The approach used is dependent upon the type of information available for the mixture itself and for its components.
 - Criteria as for substances Using data on the mixture itself;

However: Testing of mixtures must be avoided !

- Bridging principles Data on similar tested mixtures; or
- The Summation method Classification based on individual ingredients.

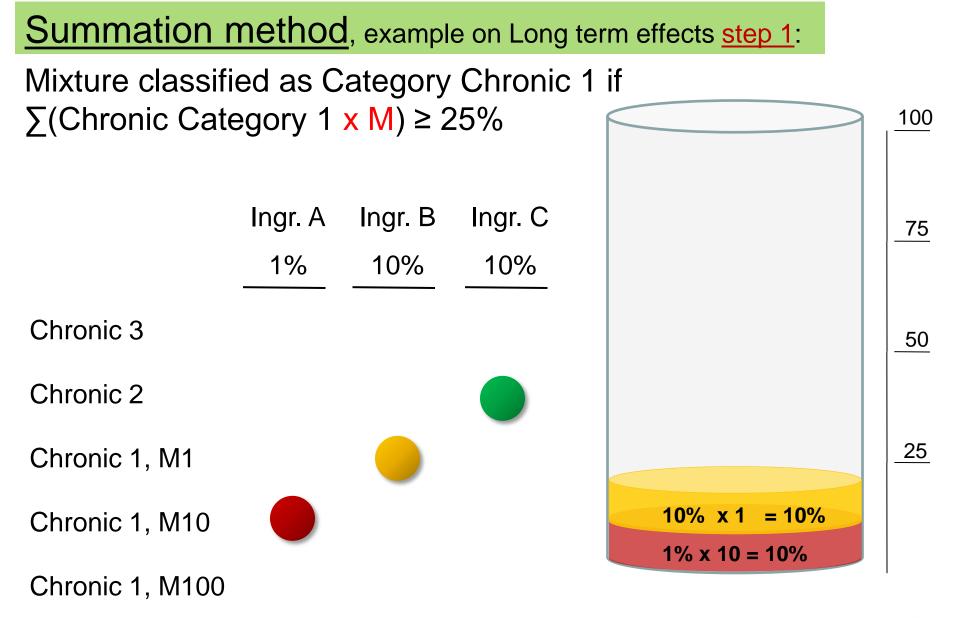
It is generally the summation of the quantities of the hazardous components that should be used to determine a specific hazard classification of the mixture.

Summation method

Short-term (acute) hazard:

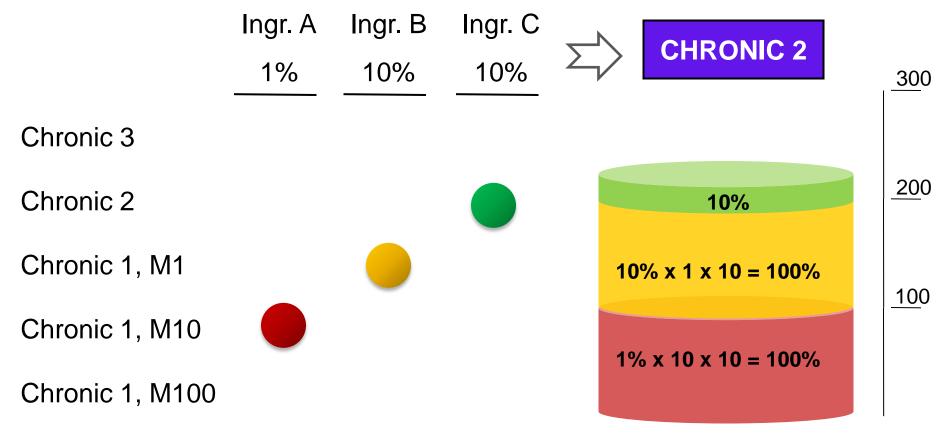
Summation of components:	Mixture is classified as:
∑(Acute 1 x M) ≥ 25 %	Acute 1

Long-term aquatic hazard (a stepwise procedure):


Summation of components:	Mixture is classified as:
∑(Chronic 1 x M) ≥ 25 %	Chronic 1
\sum (Chronic 1 x M x 10) + \sum (Chronic 2) ≥ 25 %	Chronic 2
\sum (Chronic 1 x M x 100) + \sum (Chronic 2 x 10) + \sum (Chronic 3) ≥ 25 %	Chronic 3
\sum (Chronic 1) + \sum (Chronic 2) + \sum (Chronic 3) + \sum (Chronic 4) ≥ 25 %	Chronic 4 (Safety-net)

Exercise

mixture classification


(principle use of the Summation method)

10% + 10% = 20%, which is < 25%. Hence, mixture <u>not</u> classified as Chronic 1. Summation method, example on Long term effects step 2:

Mixture classified as Category Chronic 2 if $\sum(\text{Category Chronic 1 x M x 10}) + \sum(\text{Category Chronic 2}) \ge 25\%$

100% + 100% + 10% = 210%, which is $\ge 25\%$. Hence, mixture classified as Chronic 2.

Thank You for Your Attention